Saturday, April 20, 2019

First direct image of the M87 black hole by the Event Horizon Telescope

Hello guys
I hope you are fine
Check out my new update
In my new post, i shall be explaining on how the Blackhole picture M87 was taken.
This eventually forms part of Astrophotography.
This blog will describe it in a way that it is easily understood.

The Event Horizon Telescope

The Event Horizon Telescope has released the first direct image of a black hole and its neighbourhood. This black hole lurks in the centre of a nearby galaxy called M87. This historic image shows a ring of light coming from the gas falling into the black hole. The black hole itself is shielded by the event horizon, a boundary from within which nothing can escape, and this is the dark interior in the image. Though astronomers have had solid evidence for the existence of massive black holes for many years, this historic moment marks the first time that it has been imaged.

What has the Event Horizon Telescope seen?



The Event Horizon Telescope, or EHT, has imaged the silhouette or shadow of the black hole at the centre of M87, a galaxy 55 million light years from us. To make this image, astronomers combined data from 8 different telescopes across the world in an experiment in April 2017. The data was taken at a frequency of 230 GHz, or a wavelength of 1.3 mm. Using this, astronomers have formed an image of the black hole for the first time. The event horizon of a black hole is the ultimate boundary. Nothing from within it can escape out. The ring of fire in the EHT image is light from the gas falling into the event horizon, whose shadow is the dark hole in the centre. The exact shape of the ring is due to the way the incredible gravity of the black hole bends the light around it, and the incredible speed at which the gas is travelling is why the ring is not uniform in brightness.

How big is the black hole at the centre of M87?

Almost all galaxies have black holes at their centres, and these can be a few million to a few billion times the mass of our Sun. Our Milky Way galaxy has a fairly small black hole about 4 million times as massive as our Sun. However, the black hole in M87 is a monster, and is 6500 million times the mass of the Sun. The size of its event horizon is about 20000 million km, which even bigger than our Solar System.

A telescope large enough to image the shadow of the black hole in M87 would have to be as big as the Earth itself. Since that might be a bit difficult, astronomers chose the next best thing. Using a technique called interferometry, data from many telescopes spread across the Earth were combined in a special way. This enabled astronomers to make images that show detail on as fine a scale as would a single earth-sized telescope. However, this comes with the cost of enormous computation that requires months of processing on very powerful computers.

I am providing a link below in which it will explain about the First picture of the black hole in more details.

Thanks for having a look at my post friends

You are most welcome to leave a feedback below.

Check the video below to see how to take a picture of a black hole by Katie Bouman. This will help in understanding the video through visual observation.
Enjoy the video friends and follow me for more updates.
Thank you



                                         
A picture of blackhole by CHANDRA X-RAY Observatory

No comments:

Post a Comment